

Research Statement Michael Ruth

 mruth@roosevelt.edu

 1 of 6

My research focuses on the intersection of Web services and software engineering, specifically on

software design patterns, message exchange patterns, and software testing for Web services.

Research Accomplishments

Message Exchange Patterns

The processing time for an average call to some services was on the order of hours, in which time

the calling applications would have to remain connected. Since this was clearly not optimal and

message passing is an integral part of Web service functionality, the available message exchange

patterns, such as request/response, were examined for a means of supporting callback. Web service

Description Language (WSDL), which defines the interfaces and the message exchange patterns that

those interfaces can use, does not directly support callback. Additionally, network security, specifically

firewalls, was an additional concern because in most enterprises the calling application is behind a

firewall and may not be reachable from a service outside of the firewall.

Clearinghouse Web Service

In order to combat the network security barrier, a framework was developed [1] using the

notion of a clearinghouse. The clearinghouse was developed as a set of Web services which are

accessible outside the firewall, which can then relay the response messages back to the original

calling application using a variety of means, including sockets. Additionally, code generation tools

were developed so that developers wishing to use the approach and framework could generate

client-side agents which make the calls and asynchronously wait for the response from the

clearinghouse.

Single-Request/Multiple-Response Messaging Pattern

In developing the approach, a close relative to callback, namely the single-request/multiple-

response messaging pattern was considered. This pattern is a key ingredient in notification schemes,

publish/subscribe schemes, and in batch processing. Instead of matchmaking the request and response,

the clearinghouse matches several responses to the original request [2]. This framework was developed

and has seen use in a variety of applications, including a forensics image matching database application.

Resumable Clients

Resumable clients are those clients which call a service asynchronously, shut down, and then

resume sometime in the future without a loss in progress. Some examples of resumable clients are

Research Statement Michael Ruth

 mruth@roosevelt.edu

 2 of 6

mobile applications or a client application which only needs the data being requested. Some

mapping services fit into the latter category, because the map would be downloaded, displayed,

and then the user would quit the application. The frameworks were modified to support resumable

clients using both the callback [3] and the single-request/multiple-response message patterns [4].

Regression Testing Web Services

Regression testing is an economical means of verifying that a modified system is not adversely

affected by those modifications. A key element in regression testing is regression test selection

(RTS), which aims to reduce the cost of performing regression testing by removing test cases. Safe

RTS techniques add an additional constraint by asserting that no modification revealing tests will be

left unselected. Since safe RTS techniques involve white-box testing, they cannot be directly

applied to Web services in an end-to-end manner, which is important due to the nature of Web

services possibly composed of other Web services.

Safe RTS Technique for Java Web Services

A framework was developed for applying a safe RTS technique to Java-based Web services in

an end-to-end manner [5, 6]. The framework transformed composite and simple services

developed in Java into standalone monolithic code so that dynamic analysis of the code could take

place. Although the framework was not interoperable, it did allow the use of the safe RTS

technique developed by Rothermel and Harrold [7], which was based on Java-based control-flow

graphs (CFG). Another limitation of the framework was that it was also limited to those services

which were developed by the same service provider, since it required all the requisite code for all

the services in the interaction, which was a severe limitation of the approach.

Safe RTS Technique for Web Services

After developing an approach for Java Web services, the approach was broadened to more

general Web services [8]. This approach was the first safe RTS technique to be applied to end-to-

end Web services. This approach also uses CFGs since they are ideal for use in Web service

environments for a number of reasons. First, CFGs can be generated from programs written in any

language, or extracted from designs at any granularity. Thus, they can be used as a common

representation mechanism among Web services which could be written in any language on any

platform. Second, since CFGs are special cases of finite-state machines, they can be composed into

Research Statement Michael Ruth

 mruth@roosevelt.edu

 3 of 6

global CFGs. These two characteristics of CFGs are essential for supporting both the interoperability

and composition of Web services.

In the approach, composite services have to build their CFGs, their test cases, and mappings of

their test cases to their CFGs using the CFGs, test cases, and mappings of test cases to CFGs of the

services they call. A limitation of this approach is that it requires a great deal of work on the part of

the developers of the services in terms of updating and propagating the CFGs in order to perform

the RTS and RT processes.

Automating RTS and RT for Web Services

After developing the approach, an approach was developed to automate the regression testing

and RTS process through monitoring, exchanging, and updating CFGs between related parties using

a decentralized event notification scheme [9]. The automation of the RTS framework is carried out by

a set of distributed agents, one for each service and application, which interact together to perform the

regression test selection and regression testing processes.

Concurrency in RTS Frameworks for Web Services

The automation of the approach provides an entirely new set of challenges. More specifically, the

handling of concurrent modifications becomes critical [10]. There are a number of challenges inherent

in concurrency in such a system, but the major hurdle was test consistency, which involves ensuring that

each test case has a consistent view of the system under test. The developed approach ensures that

once the system reaches a stable-state, the last set of test cases are guaranteed to be consistent, which

was called eventual test consistency.

Empirical Analysis of RTS Techniques for Web Services

Additionally, in order to validate the approach, a group of five Web service-based systems were

developed as a benchmark to perform an empirical analysis of the approach [11]. The systems were

developed because there were no preexisting empirical studies of RTS techniques for Web services.

Each of the five systems has roots in the literature and was instrumented with CFGs, test cases, and

coverage information. After which, the technique was performed and compared the cost of the

technique to the “select-all” technique, which simply runs all tests with no selection step. The study

demonstrated that the approach is both feasible and can be effective in reducing the cost of performing

regression testing for the systems developed.

Research Statement Michael Ruth

 mruth@roosevelt.edu

 4 of 6

Current Research

I am currently researching the information sharing aspect of RTS. In order to perform end-to-end

RTS, some information must be shared between the participants in an interaction. Service providers are

unlikely to share implementation details due to intellectual property concerns. In the approach, the

information which must be shared was carefully considered to ensure maximum participation through

decentralized control and information hiding. The information which must be shared was minimized

into requiring only the CFGs of each operation the service provides, test cases which cover the CFG, and

coverage information mapping the test cases to the CFGs. In addition, each participant maintains

control over the granularity of the CFGs they provide which can vary from very detailed (statement) to

very abstract (operation), depending on the needs of the service provider. Also, the source code, which

is contained in the CFGs, is shielded from the testers, which allows the testers to identify what part of

the system was modified, without knowing exactly how it was modified. In summary, I wish to compare

our approach to other RTS frameworks for Web services in terms of their information sharing. I expect

to develop this idea further in the next few months, and be looking for a conference venue shortly after.

In addition, I have been working on a journal article detailing my work on safe RTS for Web services,

which I am expecting to have completed later this year, and am looking for a venue for that now.

Future Research Plans

Benchmark for Comparing RTS techniques for Web Services

The performance and selectivity of RTS technique in traditional application is normally determined

using a set of standard programs which can be used to test the technique. Since this standard does not

exist for Web services, its development is of specific interest to me because it would address some

standardization issues in relation to how well these RTS techniques perform. This particular avenue

implies the creation and implementation of a standardized benchmark which is representative of Web

services as a whole. The systems developed in my empirical analysis need some adjustments in terms of

their representativeness of Web services. There needs to be greater variety of interactions between

the involved services. The development of a standard benchmark would provide a means of comparing

and contrasting RTS techniques for Web services in a unique and open way. Additionally, this would

open a new avenue for research, namely actually comparing two techniques for Web services developed

for performance.

Research Statement Michael Ruth

 mruth@roosevelt.edu

 5 of 6

Concurrency and Fault Locatability

In my earlier work, a framework was developed which provides eventual test consistency, but did

not provide an alternative. This is another problem I am very interested in because in some ways, it left

some of the concurrency concerns unsolved. Specifically, I want to focus on solving fault locatability,

which provides the testers with the location of the modification which produced the fault, should a fault

occur, regardless of where the fault occurred within the system. Solving fault locatability is possible, but

it does require synchronization of some modifications, which can be very restrictive. Synchronization

may imply that only one modification may occur in a system at any given time and no new modification

can occur until the last modification was completely tested. However restrictive, it may prove to be

invaluable for those enterprises in which that type of synchronization is necessary and the restrictions

are acceptable.

Data Flow-Based RTS Techniques

In addition to regression testing using CFG-based approaches, I would like to focus on data-flow

based techniques. This is a direct extension of my earlier approach since data-flow techniques use CFGs

as a means to analyze software for determining the lifecycle of variables which flow in and out of the

services. Extending this approach would require decentralizing control of the technique so that it can be

performed at various parts of an interaction. Another possible caveat of extending the approach to

data-flow analysis is that it may require the sharing of too much information, which would prevent

service providers from participating, but I believe this caveat can be overcome.

Student Involvement

Student involvement in research at the undergraduate, as well as the graduate, level is very

important to me. Students can contribute to my research by contributing their thoughts and ideas

which may complement or even extend my own. A small group of undergraduates assisted with the

empirical analysis portion of my dissertation and they offered some very interesting ideas on how to

improve the project itself [9]. Their ideas provided me with much needed insight on how to improve the

benchmark to become more representative of Web services as a whole. They certainly had an impact

on my scholarly work and on my attitude towards undergraduate involvement. There are parts of my

research plan which can be segmented into small projects for use in the classroom, which would allow

the students to put into practice many of the concepts and skills they are concurrently learning in the

classroom, or as semester long project for independent study.

Research Statement Michael Ruth

 mruth@roosevelt.edu

 6 of 6

References

[1] Ruth, M., Lin, F, and Tu, S., “A Client-Side Framework Enabling Callbacks from Web Services”,

Proceedings of the 3
rd

 European Conference on Web Services (ECOWS’05), Vaxjo, Sweden, pp. 105-

116, Nov. 2005

[2] Ruth, M., Lin, F, and Tu, S., “Adapting Single-Request/Multiple-Response Messaging to Web

Services”, Proceedings of the 29
th

 Annual International Computer Software and Applications

Conference (COMPSAC’05), Edinburgh , UK , pp. 287-292 , July 2005

[3] Ruth, M., Lin, F., and Tu, S., “A Framework for Web Services with Callbacks for Resumable Clients”,

Proceedings of the 1
st

 International Conference on Next Generation Web Services Practices

(NWeSP’05), Seoul, South Korea, pp. 412-417, Aug. 2005.

[4] Ruth, M., Lin, F., and Tu, S., “A Client-side Framework for Resumable Applications to Utilize Web

Services With SRMR Callbacks”. International Journal of Web Service Practices, 2005, Vol. 1, Issue 1

pp. 73-88

[5] Lin, F., Ruth, M., and Tu, S., “Applying Safe Regression Test Selection Techniques to Java Web

Services”, Proceedings of the 2
rd

 International Conference on Next Generation Web Services

Practices (NWeSP’06), Seoul, South Korea, pp. 133-140, Aug. 2006.

[6] Ruth, M., Lin, F., and Tu, S., “Applying Safe Regression Test Selection Techniques to Java Web

Services”. International Journal of Web Service Practices, 2006, Vol. 2, Issue 1-2, pp. 1-10

[7] Rothermel, G., and Harrold, M. J., “A Safe, Efficient Regression Test Selection Technique”, ACM

Transactions on Software Engineering Methodology, vol. 6, no. 2, pp. 173-210, Apr. 1997.

[8] Ruth, M., and Tu, S., “Applying Safe Regression Test Selection to Web Services”, Proceedings of the

2
nd

 International Conference on Internet and Web Applications and Services (ICIW’07), pp. 278-89,

Mauritius, May 2007

[9] Ruth, M., Oh, S., Loup, A., Horton, B., Gallet, O., Mata, M., Tu, S., “Towards Automatic Regression

Test Selection for Web Services”, International Workshop on Testing Emerging Software Technology

2007 (TEST ’07), Proceedings of International Conference on Computer and Software Applications

2007 (COMPSAC ’07), Beijing, China, pp. 729-736, July 2007

[10] Ruth, M., Tu, S., “Empirical Studies of a Decentralized Regression Test Selection Framework for Web

Services”, Proceedings of the 2008 Workshop on Testing, Analysis, and Verification of Web Services

and Applications, (TAV-WEB ’08), pp. 8-14, Seattle, Washington, Jul. 2008

[11] Ruth, M., “Concurrency in a Decentralized Automatic Regression Test Selection Framework for Web

Services“, Proceedings of the Mardi Gras Conference, (SIGAPP MG’08), Art. 7, Baton Rouge, LA,

Feb. 2008

